Chapter 67
Suspension System Fundamentals

Name: _________________________ Date: _____________
Instructor: ______________________ Score: _____________ Textbook pages 1243–1264

Objective: After studying this chapter, you will be able to explain the construction and operation of modern suspension systems.

Basic Suspension System

1. What is *chassis stiffness* and how is it measured?

2. Define the six basic parts of a suspension system.
 - Control arm:
 - Steering knuckle:
 - Ball joint:
 - Spring:
 - Shock absorber or damper:
 - Control arm bushing:

3. Independent suspension systems allow one wheel to move up and down with _____ on the _____.

4. What is *understeer*?

5. What is *oversteer*?

6. Explain *lateral acceleration* and how it is measured.
Suspension System Springs

7. Suspension system springs must ___ and ___ with bumps and holes in the road.

8. What are the four types of suspension system springs?
 (A) ____________________________
 (B) ____________________________
 (C) ____________________________
 (D) ____________________________

Suspension System Construction

9. A control arm holds the ___ in position as the wheel moves up and down.
 (A) steering knuckle
 (B) bearing support
 (C) axle housing
 (D) All of the above.

10. What is a strut rod?

11. Without shock absorbers, the vehicle would continue to ___ after striking a dip or hump in the road.

12. What is the advantage of gas-charged shock absorbers?

13. How does a gas-filled shock absorber operate?

14. What components does a strut assembly consist of?

15. How does a sway bar work?

16. A(n) ___ keeps the suspension system from hitting the frame structure.

17. If you hear a loud bang or thud when going over a large bump in the road, what might be happening and what might this be telling you?
18. Explain the construction, operation, and adjustment of a torsion bar suspension system.

19. Explain the construction/operation of a MacPherson strut suspension system.

20. Explain these three basic parts of an electronic height control system.

 Height sensor:

 Sensor link:

 Solenoid valve:

21. Explain these major parts of a typical electronic shock absorber system.

 Steering sensor:

 Brake sensor:

 Acceleration sensor:

 Mode switch:

 Electronic control unit:

 Shock actuators:

22. How can a sonar sensor be used in an electronically controlled suspension system?

23. A(n) _____ suspension system uses computer controlled hydraulic rams instead of conventional suspension system springs and shock absorbers.

24. What purpose do ball joints serve?

25. Spring _____ are limited by a vehicle’s shock absorbers.
26. Shock absorber __ occurs when the vehicle’s tire is forced upward upon hitting a bump.

27. Label the parts of the control arm.

(A)
(B)
(C)
(D)
(E)
(F)
(G)

Suspension Leveling Systems

28. What is the main function of a suspension leveling system?

29. A(n) __ suspension leveling system uses air shocks and an electric compressor to maintain curb height.

30. What is a height sensor?

31. Identify the parts of the double-wishbone suspension system.

(A)
(B)
(C)
(D)
(E)
(F)
(G)

Electronic and Active Suspension Systems

32. What is a mode switch?

33. An active suspension system uses computer-controlled ____ instead of conventional springs and shock absorber actuators to control ride characteristics.